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Abstract. Various modifications of the mean-field renormalisation group method are  
analysed to study the convergence of the critical coupling and  critical exponents to their 
exact values as  the cluster size increases. Appropriate choice of the length scaling factor 
o r  of the scaling quantity can give appreciable improvement over the concentional procedure 
for short  clusters. The best Lalues are achieved when both the bulk and surface critical 
behaviour a re  explicitly taken into account.  

1. Introduction 

In a previous paper (Niebur and Solyom 1987, hereafter referred to as I )  we have 
analysed the convergence of the mean-field-like variational and  renormalisation group 
approaches. In both cases the method is based on performing calculations on finite 
clusters. The results obtained in a variational scheme with cluster wavefunctions should 
converge to the exact result as the size of the clusters goes to infinity. It was shown 
in I that the convergence is in fact rather slow. Better results are obtained if a mean-field 
renormalisation group ( M F R G )  transformation (Indekeu et a1 1982) is performed on 
the finite clusters. In fact MFRG gibes quite good results for the critical couplings of 
the Z ( q )  model for q = 2, 3 and 4, where the transition is of second order, although 
the values for the critical exponent v are rather poor. For larger q values, q 3 5, where 
a Kosterlitz-Thouless phase is expected between the ordered and disordered phases, 
MFRG gives only slight indications for this behaviour. Moreover the cluster calculation 
could not give a good estimate for the point where the order parameter vanishes, 
although there was some indication that this happens at the self-dual point for any q, 
as suggested by Zittartz (unpublished). 

Several attempts have been made to improve upon the results of the MFRG method. 
Slotte (1987) showed that for two- and three-dimensional Ising models considerable 
improvement can be achieved if the length scaling factor is determined from the number 
of bonds and  not from the number of sites. On the other hand, in I we argued that 
the quantity that scales in the same way as the effective field is not necessarily the 
average magnetisation of the cluster and proposed new scaling equations by assuming 
that the scaling quantity is the magnetisation in specific points of the finite cluster. 
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A more elaborate scheme was suggested by Indekeu et a1 (1987). It is based on 
separating the surface and  bulk terms in the magnetisation and performing the renor- 
malisation in two steps, comparing three different clusters. 

In the present paper we will consider these new methods to study how they improve 
the results obtained in I for the Z ( q )  model. In § 2 the reader is reminded of the 
model studied and of the main ideas of M F R G .  The results obtained with the use of 
the modified length scaling factor are given here. In  Ei 3 we show how the results 
change if the quantity to be scaled is not the average magnetisation. The renormalisation 
using three clusters and surface as well as bulk fields is described in  $ 4. Finally, 5 5 
contains a discussion of the results. 

2. MFRG with modified length scaling factor 

In the Z ( q )  symmetric spin model the spin vector at site i can be oriented in the 
directions given by the polar angle 8, = 2 m , /  q where n, = 0, 1,2, . . . , ( q  - 1) and the 
spin state is characterised by the set of numbers n,. In the Hamiltonian version of the 
model raising, R:, and lowering, R,,  operators are introduced with the definition 

(2.1) 

Assuming a simple cos(@, - e,,,) coupling between nearest-neighbour spins, the Hamil- 
tonian of the system can be written (Elitzur er a1 1979) as 

H = - cos( 2 2 3 )  

where A is the coupling constant. 
In a mean-field treatment of this model, a finite cluster with M sites is taken and  

a complex effective field, h,, acting on the boundary spin replaces the action of the 
spins outside the cluster. The Hamiltonian to be considered is then 

M M - 1 

H , M = - C  c o s ( T ) - $ A  (R:R,+l+R,R:+,)  
) = I  , = I  

-h , (R ,+R, , ) -h ; (R t+R" , )  (2.3) 

where h: is the complex conjugate of h,. This notation is used to avoid confusion 
with the fixed-point value of h, for which the notation hT will be used. 

The MFRG transformation is defined, as usual, by comparing a cluster with M sites 
to a cluster with M ' < M  sites. The basic assumption is that the order parameter 
O(A, h y ) ,  which is the average magnetisation of the cluster for fixed effective field h ,  

O(A, h , )  =- $ ( R J + ( R ; ) )  (2.4) 

scales in the same way as the effective field itself, i.e. under a length scaling transforma- 
tion around the fixed point A * and h7 = 0, 

1 + f  

M ,=I 

A ' -  A * = L""( A - A * )  

hi = L"h, 
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0, ( A ,  h , )  satisfies 

Ou(A' ,  h ' , )=L"Oq(A ,  h , )  

A natural assumption was that the length scale is proportional to the number of 
sites in the cluster, i.e. when the renormalisation group transformation is performed 
from M sites to M '  sites one takes L = M /  M ' .  The results obtained with this assumption 
for the Z(q) symmetric (1 + 1)-dimensional spin model were given in I. It was shown 
that the critical exponents converge rather slowly as M increases. 

Slotte (1987) pointed out that a different definition of the length scaling factor is 
possible. In mean-field theory the coupling to external sites is taken into account, 
therefore a cluster with M sites embedded in a mean field simulates a somewhat larger 
cluster with free ends. Slotte suggests that a better definition of the length scale is 
obtained by counting the number of bonds instead of the number of sites. In the case 
of a chain this leads to a new scale factor 

L =  ( M S  l ) / ( M ' +  1). ( 2 . 7 )  

The value of the fixed-point coupling is unchanged, but for the critical exponent v 
new estimates are obtained. Table 1 contains the old and new estimates of v for q = 2 
and 3, as obtained for different cluster sizes. Everywhere we have taken M ' =  M - 1. 

Table 1. New estimates of the critical exponent U for the Z ( q )  model 

v ( q = 2 ,  4 q = 3 )  

M Old New Old Ne& 

2 1.48 0.87 1.28 0.75 
3 1.32 0.94 1.12 0.80 
4 1.26 0.97 1.06 0.82 
5 1.22 1 .00 1.02 0.83 
6 1.20 1.02 1 .oo 0.85 
7 1.19 1.03 0.99 0.86 
8 1.18 1.04 

It is seen that in fact for short clusters the results seem to converge much faster to 
the exactly known exponents, v = 1 for q = 2 and v = 0.8333.. . for q = 3, than in the 
case of the earlier estimates. However, for clusters with M > 6 the values go above 
the exact result and will settle to the known result for very large chains only. 

3. MFRG with different choices of the scaling quantity 

As mentioned in the previous section, the basic assumption of the M F R G  method is 
that the average magnetisation of the cluster scales in the same way as the effective 
field. For a finite system, where boundary effects are important and  the magnetisation 
is not homogeneous inside the cluster, this assumption is not a priori true, and  this 
may be one of the reasons why M F R G  converges so slowly. We suggested in I that, 
instead of the average magnetisation, perhaps the magnetisation on the surface, 

os, = a ( ( R , ) + ( R ; ) + ( R u ) + ( R ~ ) )  (3.1) 
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Table 2. Fixed-point coupling A *  a n d  critical exponent v for q = 2  a n d  3. Scaling is 
assumed for the magnetisation of the boundary spins. 

q = 2  q = 3  

M A* U A -  v 

0.7832 
0.8550 
0.8905 
0.9119 
0.9262 
0.9365 
0.9442 
0.9430 

1.48 0.9122 1.28 
1.51 0.9453 1.31 
1.53 0.9605 1.33 
1.51 0.9694 1.39 
1.56 
I .57 
1.54 
1 .50 

Table 3. Fixed-point coupling A *  and  critical exponent U for q = 2 and  3. Scaling is 
assumed for the magnetisation at  the centre of the clusters of M and  M - 1 spins.  U ,  is 
determined with a length scaling factor L = M/( M - 1 I ,  while U ,  n i th  L = ( M + 1 i/ M. 

2 
3 
4 
5 
6 
7 
8 
9 

10 

0.7832 
0.8290 
0.8817 
0.8966 
0.9185 
0.9259 
0.9379 
0.9422 
0.949 

1.48 0.87 0.9122 1.27 0.74 
1.05 0.74 0.9338 0.88 0.63 
1.21 0.94 0.9569 1.05 0.82 
1.04 0.85 0.9632 0.87 0.71 
1.17 0.99 0.9720 0.99 0.84 
I  .04 0.90 0.975 1 0.84 0.73 
1.13 1 .OO 
1.04 0.93 
1.09 0.99 

Table 4. The  same as rable 3, except that  mapping is from clusters with spin M to that 
with spin M - 2 ,  the  length scaling factor for U ,  is L =  M / ( M  - 2 ) .  while for U: L =  
i M + 1 I /  ( M - 1 ) . 

0.8085 
0.8525 
0.8896 
0.9069 
0.9224 
0.93 16 
0.9401 
0.9458 

1 .?7 0.80 0.9247 1.09 0.69 
1.13 0.83 0.9444 0.95 0.70 
1.14 0.90 0.9602 0.97 0.77 
1.11 0.92 0.9673 0.91 0.76 
1.12 0.96 0.9736 0.92 0.79 
1.10 0.96 
1.09 0.97 
1 .08 0.97 
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should be considered in the scaling relation (2.6). The idea was that, since the effective 
field acts on the boundary spins, the magnetisation on the boundary might scale in 
the same way as the effective field itself. The results obtained for the fixed-point 
coupling A *  and  the thermal exponent v for q = 2 and 3 are given in table 2. 

Contrary to expectation, the results are worse than those obtained in I using the 
average magnetisation. The critical couplings are somewhat better, but the results for 
the exponent v are, however, much worse. They do  not show any tendency of 
convergence to the known results. This shows clearly that the assumption according 
to which the effective field and the magnetisation on the surface scak  in the same way 
is not correct. On the other hand, one can argue that the mean field acting on the 
cluster should, in fact, reflect the properties of the infinite embedding medium and 
should, therefore, be proportional to the bulk magnetisation. Since the bulk magnetisa- 
tion is best approximated on sites deep in the cluster, we will assume now that the 
quantity that scales like the effective field is the magnetisation in the centre of the cluster, 

(3.2) 

where the site c is M / 2  for M even or ( M  + 1) /2  for M odd. The results obtained 
by using this quantity in the scaling equations (2.5) and (2.6) with L = M / M ' ,  M ' =  
M - 1 ,  are given in table 3. Apart from an oscillation in the exponent v due to the 
even-odd effect, the values of I' seem to converge much better than with the usual 
method, although not as well as in table 1 when the modified length scaling factor is 
used. The proposal of Slotte (1987) to choose the length scaling factor as L = ( M  + l ) / M  
does not improve the results appreciably because of the even-odd oscillations. 

The even-odd oscillation can be eliminated or decreased if an  even cluster is 
mapped to an  even one and an  odd cluster to an odd one. Choosing M' = M - 2, the 
results for the critical coupling and the critical exponent v are given in table 4, showing 
reasonable convergence to the known values. 

0, = ; ( ( R , ) +  ( R:))  

4. MFRC for bulk and surface critical behaviour 

As seen in the previous section, one problem with the usual MFRG method can be that 
the average magnetisation and  the effective field d o  not scale in the same way. Following 
a suggestion by Droz et a1 (1985) on how to study surface critical phenomena in 
finite-size scaling, Indekeu et ai (1987) proposed a modified version of MFRG based 
on using both bulk and surface terms. In addition to the effective field h, which acts 
on the surface spins only, they introduce a bulk field h acting homogeneously on all 
spins. The Hamiltonian of the Z ( q )  model takes the form 

Cf 

- 2 ( h R ,  + h ' R ; ) -  h , ( R ,  + Rtg) -  h : ( R ; +  R i f ) .  (4.1) 
, = I  

Indekeu et a1 assume that the bulk and  surface fields are scaled as 

(4.2) 
when the length scale is changed, i.e. the model with M sites is mapped on a model 
with M' sites. They assume L = M/ M'. More important, they assume that the average 

h ' =  L'Hh h: = L'hg%h, 
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magnetisation of the cluster scales like the bulk magnetisation, i.e. 

0, ( A ' ,  h',  h : )  = L"- ' ) (Ocr(A,  h,  h , )  (4.3) 

where d is the dimension of the system. In  classical statistical mechanics d is the 
spatial dimension. When going from classical statistical mechanics to a quantum 
problem by the transfer matrix, the dimension should be replaced by d, + z, where d, 
is the spatial dimension of the quantum problem and z is the dynamical exponent 
describing the scaling in the temporal direction (Jullien er a1 1978). We will choose 
z = 1, corresponding to scaling the energies in the same way as the length. For the 
q = 2 k ing  and q = 3 Potts models at least, this value is known to be exact. 

In order to be able to determine the fixed-point coupling A *  and the critical 
exponents v, y, and yHs separately, one has to perform two successive scalings, first 
from M to M ' =  M - 1 and  then from M '  to M " =  M - 2 ,  using the equations 

0 , [ A  ', h ', h :) = [ M / M ' )  " - ' H  O,%, ( A, h, h,  ) 

h : = ( M / M ' ) ' H  h,  h ' =  ( M I  M') 'b ih  ( 4 . 4 ~  ) 

A ' - A *  = ( M / M ' ) '  ' ( A  - A * )  

and 

O,..(A", h", by )  = ( M ' / M " ) d ~ ~ ' ~ f O c r  ( A ' ,  h ' ,  h : )  

hy =(M'/M' ' )Yrr$h:  h"= (M' , 'M")?i i  h' (4.46) 
A 11 - A * = ( M ' /  M " )  1: I' ( A ' - A * ). 

These equations allow a unique determination of A *  and of the combination d -y, - 
y H > .  For the exponents v, yH and y,\, however, somewhat different results are obtained 
depending on whether the first or second set of equations ( 4 . 4 ~ )  or (4.4b) is used, 
although the variations are not large. 

Our results for q = 2 and 3 are listed in tables 5 and 6, respectively. Comparing 
with the other methods this procedure has the merit of giving very good estimates for 
the critical couplings yH and yH, .  It should be noted that y ,  and y,, vary linearly 
with 1/ M and the extrapolated values were obtained from such a fit. The results agree 
well with the known values of the critical exponents. The value for v is not so good 
and depends on the scaling equation used. 

Table 5. Fixed-point coupling A *  and critical exponents U, !'H and .rk,, for the Z ( 2 )  model. 

M M M  \f Lf M M  
A *  U M M  u M  ' H  ' H  ' H  ' H  M 

3 
4 
5 
6 
7 
8 
9 

10 
Extrapolated 
Exact 

0.9424 1.227 
0.9684 1.157 
0.9797 1.119 
0.9856 1.098 
0.9893 1.081 
0.9917 1.071 
0.9933 1.056 
0.9945 1.049 
1 .oo 0.97 
1 1 

1.350 
1.207 
1.148 
1.116 
1.096 
1.08 1 
1.071 
1.065 
0.92 
1 

1.65 1 1.585 0.5 17  0.585 
1.705 1.673 0.508 0.541 
1.736 1.717 0.504 0.523 
1.757 1.745 0.501 0.514 
1.773 1.764 0.501 0.508 
1.784 1.780 0.502 0.505 
1.793 1.788 0.502 0.503 
1.799 1.797 0.501 0.501 
1.86 1.87 0.500 0.500 
1.875 1.875 0.5 0.5 
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Table 6. Fixed-point coupling A "  and  critical exponents v, y H  and  yH for the Z(3 )  model.  

M M '  \I M bl \I M M  
?'H 

M Ll M A *  ! H ?' H ?'K 
\1 M 

3 0 9768 1088 
4 0 9871 1018  
5 0 9916 0 984 
6 0 9941 0 962 
7 0 9955 0 948 
8 0 9967 0 924 
9 0 9912 0 922 

Exact 1 0 833 
Extrapolated 100 0 83 

1.226 
1.076 
1.014 
0.977 
0.954 
0.93 1 
0.922 
0.76 
0.833 

1.612 
1.662 
1.693 
1.716 
1.733 
1.741 
1.759 
1.85 
1.867 

1.537 
1.623 
1.669 
1.698 
1.720 
1.737 
1.747 
1.85 
1.867 

0.46 1 
0.432 
0.414 
0.401 
0.391 
0.384 
0.376 
0.34 
0.33 

0.536 
0.47 1 
0.438 
0.419 
0.404 
0.394 
0.3X8 
0.34 
0.33 

0 2 4 6 
A 

Figure 1. A ' / A  against A for the 217)  model for different cluster sizes. A, M = 3; 0,  ,2.1 = 4; .. M = s. 

Similar results are obtained if the scale factors M / M '  and M ' / M "  in equations 
( 4 . 4 ~ )  and  (4.4b) are replaced by ( M  + 1)/(  M ' +  1) and ( M ' +  1) / (  M " +  l ) ,  respectively, 
as suggested by Slotte (1987). The exponents obtained this way go to the same limit, 
but approach it from the other side. 

Until now we considered the cases q = 2 and 3 only, where the transition is of 
second order. We have seen in I that for q 2 5 ,  where a Kosterlitz-Thouless phase is 
expected, the MFRG gave just a hint for its existence but no definite conclusion could 
be drawn. Using the present method we have calculated A '  using (4.4~) for q = 7 ,  
M =3 ,  4 and 5. Everywhere M ' =  M -1, M " =  M - 2 .  In figure 1 we plot A ' / h  as a 
function of A. If there is a Kosterlitz-Thouless phase around A = 1, A ' / A  should 
approach unity in an extended region, deviating from it in the disordered and ordered 
phases. From the present results it is difficult to make any statement about the extent 
of the Kosterlitz-Thouless phase. 

5. Discussion 

In the present paper we have considered various improvements to the usual MFRG 

method. In the conventional definition of the MFRG transformation there are three 
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points where modifications can be made. The first is the choice of the length scaling 
factor, namely whether the length should be taken to be proportional to the number 
of sites or, as suggested by Slotte (1987) ,  to the number of interactions considered. 
The second point is the choice of the quantity that satisfies scaling, that is whether it 
is the average magnetisation or the magnetisation in the middle of the cluster, where 
boundary effects are less important. Finally, there is some arbitrariness as to whether 
the effective field acting on the cluster should scale in the same way as the bulk 
magnetisation, or whether bulk and surface fields have to be distinguished, as suggested 
by Indekeu et a1 (1987). 

We have seen that there is no ideal choice that would give best estimates for both 
the critical coupling and the critical exponents. The best critical coupling is obtained 
with the method in which the bulk and surface contributions are treated simultaneously. 
This has the advantage of yielding both bulk and surface critical exponents, but the 
values for v are not very good. Even in this case the method is good for second-order 
transitions only. For q > 5 ,  where a Kosterlitz-Thouless phase is expected, the method 
is not very reliable to detect this phase. 

Considerable improvement is found in the value of v if the length scaling factor 
is chosen from the number of bonds and not from the number of sites, although the 
values d o  not converge monotonically to their exact values. Reasonably good values 
are obtained also if the magnetisatior! in the centre of the cluster is taken as a scaling 
quantity. 

It would be interesting to see whether this tendency is valid in other models as 
well, to see what the best procedure is when critical couplings or exponents are to be 
determined. 
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